Exercise 40

Show that f is continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}\sin x & \text { if } x<\pi / 4 \\ \cos x & \text { if } x \geq \pi / 4\end{cases}
$$

Solution

The function is continuous on $(-\infty, \pi / 4)$ because, assuming $a<\pi / 4$,

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a} \sin x \\
& =\sin \left(\lim _{x \rightarrow a} x\right) \\
& =\sin a \\
& =f(a) .
\end{aligned}
$$

The function is continuous on $(\pi / 4, \infty)$ because, assuming $a>\pi / 4$,

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a} \cos x \\
& =\cos \left(\lim _{x \rightarrow a} x\right) \\
& =\cos a \\
& =f(a) .
\end{aligned}
$$

The function is continuous at $x=\pi / 4$ because

$$
\lim _{x \rightarrow \frac{\pi}{4}-} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{4}} f(x)=f\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

Therefore, f is continuous on $(-\infty, \infty)$.

